This is the QA environment of the MD-SOAR platform. It is for TESTING PURPOSES ONLY. Navigate to https://mdsoar.org to access the latest open access research from MD-SOAR institutions.
QA Environment
 

ARIS: A Real Time Edge Computed Accident Risk Inference System

dc.contributor.authorOvi, Pretom Roy
dc.contributor.authorDey, Emon
dc.contributor.authorRoy, Nirmalya
dc.contributor.authorGangopadhyay, Aryya
dc.date.accessioned2021-11-05T16:38:39Z
dc.date.available2021-11-05T16:38:39Z
dc.date.issued2021-10-08
dc.description2021 IEEE International Conference on Smart Computing (SMARTCOMP)en_US
dc.description.abstractTo deploy an intelligent transport system in urban environment, an effective and real-time accident risk prediction method is required that can help maintain road safety, provide adequate level of medical assistance and transport in case of an emergency. Reducing traffic accidents is an important problem for increasing public safety, so accident analysis and prediction have been a subject of extensive research in recent time. Even if a traffic hazard occurs, a readily deployable structure with an accurate prediction of accident can contribute to better management of rescue resources. But the significant shortcomings of current studies are the use of small-scale datasets with minimal scope, being based on extensive data sets, and not being applicable for real-time purposes. To overcome these challenges, we propose ARIS: a system for real-time traffic accident prediction built on a traffic accident dataset named ‘US-Accidents’ which covers 49 states of United States, collected from February 2016 to June 2020. Our approach is based on a deep neural network model that utilizes a variety of data characteristics, such as time-sensitive weather data, textual information, and discerning factors. We have tested ARIS against multiple baselines through a comprehensive series of experiments across several major cities of USA, and we have noticed significant improvement during inference especially in detecting accident classes. Additionally, to make our model edge-implementable we have compressed our model using a joint technique of magnitude-based weight pruning and model quantization. We have also demonstrated the inference results along with power consumption profiling after deploying the model on a resource constrained environment that consists of Intel Neural Compute Stick 2 (NCS2) with Raspberry Pi 4B (RPi4). Our investigation and observations indicate major improvements to predict unusual traffic accident event even after model compression and deployment. We have managed to reduce the model size and inference time by ≈ 6x, and ≈ 70 % respectively with insignificant drop in performance. Furthermore, to better understand the importance of each individual type of variables used in our analysis, we have showcased a comprehensive ablation study.en_US
dc.description.sponsorshipThis research is partially supported by NSF grant number 1923982, “HDR DSC: Collaborative Research: Creating and Integrating Data Science Corps to Improve the Quality of Life in Urban Areas”.en_US
dc.description.urihttps://ieeexplore.ieee.org/abstract/document/9556252en_US
dc.format.extent8 pagesen_US
dc.genreconference papers and proceedingsen_US
dc.genrepostprintsen_US
dc.identifierdoi:10.13016/m2yow8-nabr
dc.identifier.citationOvi, Pretom Roy et al.; ARIS: A Real Time Edge Computed Accident Risk Inference System; 2021 IEEE International Conference on Smart Computing (SMARTCOMP), 8 October 2021; https://doi.org/10.1109/SMARTCOMP52413.2021.00027en_US
dc.identifier.urihttps://doi.org/10.1109/SMARTCOMP52413.2021.00027
dc.identifier.urihttp://hdl.handle.net/11603/23237
dc.language.isoen_USen_US
dc.publisherIEEEen_US
dc.relation.isAvailableAtThe University of Maryland, Baltimore County (UMBC)
dc.relation.ispartofUMBC Center for Real-time Distributed Sensing and Autonomy
dc.relation.ispartofUMBC Information Systems Department
dc.relation.ispartofUMBC Faculty Collection
dc.relation.ispartofUMBC Student Collection
dc.rightsThis item is likely protected under Title 17 of the U.S. Copyright Law. Unless on a Creative Commons license, for uses protected by Copyright Law, contact the copyright holder or the author.en_US
dc.rights© 2021 IEEE.  Personal use of this material is permitted.  Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
dc.subjectUMBC Mobile Pervasive & Sensor Laben_US
dc.titleARIS: A Real Time Edge Computed Accident Risk Inference Systemen_US
dc.typeTexten_US
dcterms.creatorhttps://orcid.org/0000-0002-1290-0378en_US
dcterms.creatorhttps://orcid.org/0000-0003-1836-0541en_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
125200a047.pdf
Size:
1.01 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.95 KB
Format:
Item-specific license agreed upon to submission
Description: